- The formula of linear regression: y=mx+b .This formula represents a straight line but not all relationships are linear.
- Linear regression is just one example of all class of regressions.It's actually a first-degree polynomial regression.
- Polynomial regressions:

first degree polynomial regression - linear regression 
second degree polynomial regression 
third degree polynomial regression
- python code example
import numpy as np import matplotlib.pyplot as plt np.random.seed(2) numberOfVisitors = np.random.normal(3, 1, 1000) numberOfClicks = np.random.normal(50, 10, 1000) / numberOfVisitors x = np.array(numberOfVisitors) y = np.array(numberOfClicks) # create a line from x=0 to x=7 width 100 evenly spaced values xp = np.linspace(0, 7, 100) # 4 degree polynomial fit p4 = np.poly1d(np.polyfit(x, y, 4)) plt.scatter(x, y) plt.plot(xp, p4(xp), c='r') plt.show()
![]() |
| 4 degree polynomial fit |

No comments:
Post a Comment